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The focus of this paper is to construct structure-preserving numerical methods for the fractional nonlinear 
Schrödinger wave equations in two dimensions. We first develop the Hamiltonian structure of the studied 
problem by virtue of the variational principle of the functional with fractional Laplacian. A fully-discrete 
numerical scheme is then proposed by applying the partitioned averaged vector field plus method and the Fourier 
pseudo-spectral method to the resulting Hamiltonian system. The obtained fully-discrete scheme is proved to be 
energy-preserving and mass-preserving in discrete sense. For comparison, more numerical methods are also 
listed. Finally, several numerical experiments are given to support our theoretical results.
1. Introduction

In this paper, we consider the following nonlinear fractional 
Schrödinger wave equations (NFSWEs)

𝑢𝑡𝑡 + (−Δ)𝛼∕2𝑢+ i𝜅𝑢𝑡 + 𝛽|𝑢|2𝑢 = 0, 𝒙 ∈Ω, 𝑡 ∈ (0, 𝑇 ] (1.1)

with the initial conditions

𝑢(𝒙,0) = 𝑢0(𝒙), 𝑢𝑡(𝒙,0) = 𝑢1(𝒙), (1.2)

and the boundary conditions with periods of 2𝐿, where i =
√
−1, 1 <

𝛼 ≤ 2, 𝒙 ∈ Ω ⊂ ℝ𝑑 (𝑑 = 1, 2), 𝜅 and 𝛽 > 0 are both real constants, 𝑢(𝒙, 𝑡) is 
unknown complex valued function, 𝑢0(𝒙) and 𝑢1(𝒙) are known smooth 
functions. The fractional Laplacian can be given by the Fourier trans-

form as

(−Δ)
𝛼

2 𝑢(𝒙, 𝑡) = −1 [|𝝃|𝛼 (𝑢(𝝃, 𝑡))
]
, (1.3)

where  is the Fourier transform and −1 denotes its inverse, see [1]. 
In particular, the fractional Laplacian operator is equivalent to the Riesz 
fractional derivative in one dimension [2,3], and it will degenerate to 
the classical Laplacian operator when 𝛼 = 2, and the corresponding in-

teger order classical problem has been studied relatively well, see e.g., 
[4–7].

The studied problem arises from a variety of physical applications, 
such as the nonrelativistic limit of the Klein-Gordon equation [8,9], 
the Langmuir wave envelope approximation in plasma [10], and the 
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modulated planar pulse approximation of the sine-Gordon equation for 
light bullets [11,12]. It can be regarded as a generalization of the inte-

ger order Schrödinger equations, and can be derived by extending the 
Feynman path integral to the Lévy one, see [13,14].

Like many other differential models based on physical scenario, 
the studied problem (1.1)-(1.2) with periodic boundary conditions pos-

sesses the mass and energy conservation laws as follows

𝐺(𝑡) =𝐺(0), 𝐸(𝑡) =𝐸(0), 0 < 𝑡 ≤ 𝑇 , (1.4)

where the mass

𝐺(𝑡) = 𝜅‖𝑢(⋅, 𝑡)‖2 + 2 Im
(
𝑢𝑡, 𝑢

)
, (1.5)

and the energy

𝐸(𝑡) = 1
2

(‖‖𝑢𝑡(⋅, 𝑡)‖‖2 + ‖‖‖(−Δ) 𝛼4 𝑢(⋅, 𝑡)‖‖‖2 + 𝛽

2
‖𝑢(⋅, 𝑡)‖4

𝐿4

)
. (1.6)

It can be obtained by taking inner product of (1.1) with 𝑢 and 𝑢𝑡 respec-

tively, and noticing that

∫
Ω

(−Δ)
𝛼

2 𝑢(𝒙, 𝑡)𝑢̄(𝒙, 𝑡)𝑑𝒙 = ∫
Ω

(−Δ)
𝛼

4 𝑢(𝒙, 𝑡)(−Δ)
𝛼

4 𝑢̄(𝒙, 𝑡)𝑑𝒙. (1.7)

In view of this, we want to construct numerical methods that pre-

serve these physical invariants. This is because the capacity to preserve 
some invariant properties of the original differential equation has be-

come a criterion for evaluating the success of a numerical simulation 
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in some fields, see [15]. Also, Kang Feng said “A basic idea behind the 
design of numerical schemes is that they can preserve the properties 
of the original problems as much as possible”. In fact, over the last 10 
years, many researchers have paid attention to this topic. For exam-

ple, Wang and Xiao [16] firstly presented a Crank-Nicolson difference 
scheme which conserves the discrete mass for the coupled nonlinear 
fractional Schrödinger equations, and then, in [17], they further pro-

posed a linearly implicit scheme which conserves a modified discrete 
mass and energy. Ran and Zhang [18] proposed an implicit differ-

ence scheme and linear difference scheme which preserves the original 
and modified mass and energy respectively for the strongly coupled 
nonlinear fractional Schrödinger equations. Wang and Huang [19,20]

derived an energy and mass conservative Crank-Nicolson difference 
scheme and linear difference scheme for the single cubic fractional 
Schrödinger equations. Wang et al. [21] presented a split-step spec-

tral Galerkin method for the two-dimensional nonlinear space-fractional 
Schrödinger equation, which only conserves the discrete mass. In terms 
of the model problem (1.1)-(1.2), Ran and Zhang [22] first developed a 
three-level linearly implicit difference scheme which preserves a mod-

ified discrete mass and energy well. Li and Zhao [23] considered a 
conservative strategy by combining the Crank-Nicolson method with 
the Galerkin finite element method, and a fast Krylov subspace solver 
with suitable circulant preconditioner is designed to save computational 
cost. Cheng and Qin [24] developed a linearly-implicit conservative nu-

merical scheme based on the scalar auxiliary variable (SAV) method, 
which only preserves a modified energy, not mass. Hu et al. [25] pro-

posed three energy-preserving spectral Galerkin methods by applying 
Crank-Nicolson, SAV and exponential-SAV(ESAV) methods in time re-

spectively. Zhang and Ran [26] proposed and analyzed the higher order 
energy-preserving difference scheme based on triangular-SAV(T-SAV) 
approach.

However, existing work has focused almost exclusively on the one-

dimensional case, and these proposed methods only preserve energy, 
or even modified energy. This leads us to develop more effective 
methods that can preserve the original energy and mass for solving 
multi-dimensional problems. Noticing that the averaged vector field 
(AVF) method can preserve the energy for Hamiltonian systems [27,28]. 
Moreover, the partitioned averaged vector field (PAVF) methods re-

cently proposed that can preserve more conservative property besides 
the conventional energy, and it has been used to construct conserva-

tive schemes for Hamiltonian ordinary differential equations, see [29]. 
These research foundations make it possible for us to achieve our goals, 
and the derivation of the Hamiltonian structure for studied problem 
(1.1)-(1.2) is the successful key for construction of structure preserving 
methods.

To our knowledge, there are few works focusing on the Hamilto-

nian structure of fractional differential equations. Recently, Wang and 
Huang [30] presented the variational derivative of the functional with 
fractional Laplacian, and reformulated the one-dimensional fractional 
nonlinear Schrödinger equation as a Hamiltonian system. Fu and Cai 
[31] derive the Hamiltonian formulation of the two-dimensional frac-

tional Klein-Gordon-Schrödinger equation, and subsequently develop-

ing conservative schemes. Based on this, we first derive the Hamil-

tonian formulation of the two-dimensional NFSWEs (1.1)-(1.2) with 
periodic boundary conditions, and then successfully construct conser-

vative schemes by combining the partitioned averaged vector field plus 
(PAVF-P) method and the Fourier pseudo-spectral method.

The remainder of this work is organized as follows. In Section 2, 
we first investigate the Hamiltonian structure of the two dimensional 
NFSWEs (1.1)-(1.2) with periodic boundary conditions, and then we 
derive a semi-discrete conservative system by using the Fourier pseudo-

spectral method to approximate the resulting Hamiltonian system in 
space. In Section 3, we obtain a class of fully-discrete conservative 
schemes by utilizing the PAVF-P method to discrete the previous space 
semi-discrete system, and prove the discrete conservation laws. Numer-

ical examples in one and two dimensions are presented in Section 4
55
to demonstrate the theoretical results. Section 5 presents some conclu-

sions.

2. Hamiltonian structure and space semi-discrete system

2.1. Hamiltonian structure of NFSWEs

It is well-known that Hamiltonian structure is crucial in construct-

ing structure-preserving algorithms for some problems. However, to 
our knowledge, no researchers have considered the Hamiltonian struc-

ture of NFSWEs (1.1)-(1.2). Based on this, here we first reconstruct the 
Hamiltonian structure of such problem with periodic boundary condi-

tions.

Setting

𝑢 = 𝑝+ i𝑞, 𝑢𝑡 = 𝜑+ i𝜓, (2.1)

where 𝑝, 𝑞, 𝜑, 𝜓 are all real-valued functions. Then, NFSWEs (1.1) can 
be rewritten as

𝜑𝑡 + i𝜓𝑡 + (−Δ)
𝛼

2 𝑝+ i (−Δ)
𝛼

2 𝑞 + i𝜅𝜑− 𝜅𝜓 + 𝛽
(
𝑝2 + 𝑞2

)
(𝑝+ i𝑞) = 0. (2.2)

Separating the real and imaginary parts from the above equation gives 
that

𝜑𝑡 + (−Δ)
𝛼

2 𝑝− 𝜅𝜓 + 𝛽
(
𝑝2 + 𝑞2

)
𝑝 = 0,

𝜓𝑡 + (−Δ)
𝛼

2 𝑞 + 𝜅𝜑+ 𝛽
(
𝑝2 + 𝑞2

)
𝑞 = 0. (2.3)

Namely, NFSWEs (1.1) can be rewritten as an equivalent coupled sys-

tem

𝜑𝑡 = −(−Δ)
𝛼

2 𝑝+ 𝜅𝜓 − 𝛽
(
𝑝2 + 𝑞2

)
𝑝, (2.4)

𝜓𝑡 = −(−Δ)
𝛼

2 𝑞 − 𝜅𝜑− 𝛽
(
𝑝2 + 𝑞2

)
𝑞, (2.5)

𝑝𝑡 = 𝜑, (2.6)

𝑞𝑡 = 𝜓, (2.7)

where 𝑝, 𝑞, 𝜑, 𝜓 subject to the periodic boundary conditions.

In order to get the Hamiltonian formulation of NFSWEs (1.1), we 
introduce two important lemmas.

Lemma 2.1. [30] For a functional 𝐹 [𝑔] with the following form

𝐹 [𝑔] = ∫
Ω

𝑓

(
𝑔(𝒙), (−Δ)

𝛼

4 𝑔(𝒙)
)
𝑑𝒙, (2.8)

where 𝑓 is smooth function on Ω, the variational derivative of 𝐹 [𝑔] is given 
as follows

𝛿𝐹

𝛿𝑔
= 𝜕𝑓

𝜕𝑔
+ (−Δ)

𝛼

4
𝜕𝑓

𝜕

(
(−Δ)

𝛼

4 𝑔

) . (2.9)

Lemma 2.2. [31] Given 1 < 𝛼 ≤ 2, then for any real periodic functions 
𝑝, 𝑞 ∈𝐿2(Ω), we have

∫
Ω

(−Δ)
𝛼

2 𝑝𝑞𝑑𝒙= ∫
Ω

(−Δ)
𝛼

4 𝑝(−Δ)
𝛼

4 𝑞𝑑𝒙 = ∫
Ω

𝑝(−Δ)
𝛼

2 𝑞𝑑𝒙. (2.10)

Based on the above preparation, we can prove the following results.

Theorem 2.3. Let

 = 𝜅 ∫
Ω

(𝑝2 + 𝑞2)𝑑𝒙+ 2Im(∫
Ω

(𝜑+ i𝜓)(𝑝− i𝑞)𝑑𝒙), (2.11)

 = 1
2 ∫

Ω

(
(𝜑2 +𝜓2) +

(
(−Δ)

𝛼

4 𝑝

)2
+
(
(−Δ)

𝛼

4 𝑞

)2
+ 𝛽

2
(𝑝2 + 𝑞2)2

)
𝑑𝒙.

(2.12)
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Then the equivalent system (2.4)-(2.7) has the following two conservation 
laws:

𝑑

𝑑𝑡
 = 0, 𝑑

𝑑𝑡
 = 0. (2.13)

Proof. Computing the inner product of (2.4) and (2.5) with 𝜑 and 𝜓
respectively, one immediately gets the first conservation law. Notic-

ing that Lemma 2.2, and taking the inner products of (2.4)-(2.7) with 
𝜑𝑡, 𝜓𝑡, 𝑝𝑡, −𝑞𝑡 respectively, one can deduce that the second conservation 
law. This proof is completed. □

Theorem 2.4. NFSWEs (1.1) can be reorganized into Hamiltonian system

⎛⎜⎜⎜⎜⎝
𝜑𝑡
𝜓𝑡
𝑝𝑡
𝑞𝑡

⎞⎟⎟⎟⎟⎠
= 𝐽

⎛⎜⎜⎜⎜⎝
𝛿∕𝛿𝜑
𝛿∕𝛿𝜓
𝛿∕𝛿𝑝
𝛿∕𝛿𝑞

⎞⎟⎟⎟⎟⎠
, (2.14)

where the Hamilton operator

𝐽 =

⎛⎜⎜⎜⎜⎝
0 𝜅 −1 0
−𝜅 0 0 −1
1 0 0 0
0 1 0 0

⎞⎟⎟⎟⎟⎠
, (2.15)

and the energy functional  is defined in (2.12).

Proof. Noticing that

(−Δ)
𝛼

4 ((−Δ)
𝛼

4 𝑢(𝒙, 𝑡)) = −1
[|𝝈| 𝛼2  (−1

[|𝝈| 𝛼2  (𝑢(𝝈, 𝑡))
]
)
]

= −1
[|𝝈| 𝛼2 |𝝈| 𝛼2  (𝑢(𝝈, 𝑡))

]
= −1 [|𝝈|𝛼 (𝑢(𝝈, 𝑡))

]
= (−Δ)

𝛼

2 𝑢(𝒙, 𝑡), (2.16)

and applying the fractional variational principle in Lemma 2.1 yields 
that

𝛿
𝛿𝑝

= 1
2

(
2(−Δ)

𝛼

2 𝑝+ 2 ⋅ 𝛽
2
(
𝑝2 + 𝑞2

)
⋅ 2𝑝

)
= (−Δ)

𝛼

2 𝑝+ 𝛽
(
𝑝2 + 𝑞2

)
𝑝,

(2.17)

𝛿
𝛿𝑞

= 1
2

(
2(−Δ)

𝛼

2 𝑞 + 2 ⋅ 𝛽
2
(
𝑝2 + 𝑞2

)
⋅ 2𝑞

)
= (−Δ)

𝛼

2 𝑞 + 𝛽
(
𝑝2 + 𝑞2

)
𝑞,

(2.18)

𝛿
𝛿𝜑

= 𝜑, (2.19)

𝛿
𝛿𝜓

= 𝜓. (2.20)

This together with the equivalent form (2.4)-(2.7) of NFSWEs (1.1) de-

duces that⎛⎜⎜⎜⎜⎝
𝜑𝑡
𝜓𝑡
𝑝𝑡
𝑞𝑡

⎞⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎝
0 𝜅 −1 0
−𝜅 0 0 −1
1 0 0 0
0 1 0 0

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
𝛿∕𝛿𝜑
𝛿∕𝛿𝜓
𝛿∕𝛿𝑝
𝛿∕𝛿𝑞

⎞⎟⎟⎟⎟⎠
. (2.21)

This proof is completed. □

2.2. Space semi-discrete system

Considering the periodic boundary conditions, we choose the 
Fourier pseudo-spectral method for space discretization of NFSWEs 
(1.1).

Without loss of generality, we set 𝑑 = 2. For positive integer 𝑀 and 
even positive integers 𝑁𝑥 and 𝑁𝑦, denote 𝜏 = 𝑇 ∕𝑀, ℎ𝑥 = 2𝐿∕𝑁𝑥, ℎ𝑦 =
2𝐿∕𝑁𝑦. Define Ω𝜏 = Ωℎ × Ω𝜏 , where Ωℎ =

{(
𝑥𝑖, 𝑦𝑗

)
∣ 𝑖 = 0, 1, ⋯ , 𝑁𝑥−1;
ℎ
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𝑗 = 0, 1, ⋯ , 𝑁𝑦−1
}

and Ω𝜏 =
{
𝑡𝑚 ∣ 𝑡𝑚 =𝑚𝜏,0 ≤𝑚 ≤𝑀}

, with 𝑡𝑚 =𝑚𝜏, 𝑥𝑖=
−𝐿 + 𝑖ℎ𝑥 and 𝑦𝑗=−𝐿 + 𝑗ℎ𝑦.

For any grid functions 𝑢 and 𝑣 defined on Ωℎ, we define the discrete 
inner product and the associated discrete norms as

(𝑢, 𝑣) = ℎ𝑥ℎ𝑦
𝑁𝑥−1∑
𝑖=0

𝑁𝑦−1∑
𝑗=0

𝑢𝑖,𝑗𝑣𝑖,𝑗 , ‖𝑢‖ = (𝑢, 𝑢)
1
2 , ‖𝑢‖∞ = sup(

𝑥𝑖,𝑦𝑗
)
∈Ωℎ

|||𝑢𝑖,𝑗 ||| .
(2.22)

For brevity, we introduce following operators

𝛿𝑡𝑈
𝑚 = 𝑈𝑚+1 −𝑈𝑚

𝜏
, 𝑈

𝑚+ 1
2 = 𝑈𝑚+1 +𝑈𝑚

2
, (2.23)

where

𝑈𝑚 =
(
𝑢𝑚0,0,⋯ , 𝑢𝑚

𝑁𝑥−1,0
, 𝑢𝑚0,1,⋯ , 𝑢𝑚

𝑁𝑥−1,1
,⋯ , 𝑢𝑚0,𝑁𝑦−1

,⋯ , 𝑢𝑚
𝑁𝑥−1,𝑁𝑦−1

)𝑇
.

(2.24)

Let 
(
𝑥𝑖, 𝑦𝑗

)
∈Ωℎ be the Fourier collocation points. Denote 𝑢𝑁 (𝑥, 𝑦) is 

the interpolation polynomial function of 𝑢(𝑥, 𝑦), then we have

𝑢𝑁 (𝑥, 𝑦) =
𝑁𝑥∕2∑

𝑘1=−𝑁𝑥∕2

𝑁𝑦∕2∑
𝑘2=−𝑁𝑦∕2

𝑢̃𝑘1 ,𝑘2
𝑒i𝜇

(
𝑘1(𝑥+𝐿)+𝑘2(𝑦+𝐿)

)
, (2.25)

in which 𝜇 = 𝜋∕𝐿, and the coefficient

𝑢̃𝑘1 ,𝑘2
= 1
𝑁𝑥𝑐𝑘1

1
𝑁𝑦𝑐𝑘2

𝑁𝑥−1∑
𝑙1=0

𝑁𝑦−1∑
𝑙2=0

𝑢(𝑥𝑙1 , 𝑦𝑙2 )𝑒
−i𝜇

(
𝑘1(𝑥𝑙1+𝐿)+𝑘2(𝑦𝑙2+𝐿)

)
, (2.26)

where 𝑐𝑘1 = 1 for ||𝑘1|| < 𝑁𝑥∕2, 𝑐𝑘2 = 1 for ||𝑘2|| < 𝑁𝑦∕2, 𝑐𝑘1 = 2 for 𝑘1 =
±𝑁𝑥∕2, and 𝑐𝑘2 = 2 for 𝑘2 = ±𝑁𝑦∕2. As a result, the fractional Laplacian 
(−Δ)

𝛼

2 𝑢(𝑥, 𝑦) can be approximated by

(−Δ)
𝛼

2 𝑢𝑁 (𝑥, 𝑦) =
𝑁𝑥∕2∑

𝑘1=−𝑁𝑥∕2

𝑁𝑦∕2∑
𝑘2=−𝑁𝑦∕2

|||(𝑘1𝜇)2 + (
𝑘2𝜇

)2||| 𝛼2
× 𝑢̃𝑘1 ,𝑘2𝑒

i𝜇
(
𝑘1(𝑥+𝐿)+𝑘2(𝑦+𝐿)

)
. (2.27)

Inserting (2.26) into (2.27), and considering the resulting equation at 
the point (𝑥𝑖, 𝑦𝑗 ) gives that

(−Δ)
𝛼

2 𝑢𝑁
(
𝑥𝑖, 𝑦𝑗

)
=
𝑁𝑥−1∑
𝑙1=0

𝑁𝑦−1∑
𝑙2=0

𝑢(𝑥𝑙1 , 𝑦𝑙2 )
⎛⎜⎜⎝

𝑁𝑥∕2∑
𝑘1=−𝑁𝑥∕2

𝑁𝑦∕2∑
𝑘2=−𝑁𝑦∕2

1
𝑁𝑥𝑐𝑘1

1
𝑁𝑦𝑐𝑘2

|||𝜇2 ⋅ 𝐤2||| 𝛼2
× 𝑒i𝜇

(
𝑘1

(
𝑥𝑖−𝑥𝑙1

)
+𝑘2

(
𝑦𝑗−𝑦𝑙2

))⎞⎟⎟⎠
= (𝐷𝛼𝑈 )𝑖+𝑗𝑁𝑥 , (2.28)

where 𝜇2 ⋅𝐤2 = 𝜇2
(
𝑘21 + 𝑘

2
2
)
, 𝐷𝛼 is spectral symmetric differential matrix 

with the elements

(𝐷𝛼)𝑖+𝑗𝑁𝑥,𝑙1+𝑙2𝑁𝑥 =
𝑁𝑥−1∑
𝑙1=0

𝑁𝑦−1∑
𝑙2=0

1
𝑁𝑥𝑐𝑘1

1
𝑁𝑦𝑐𝑘2

|||𝜇2 ⋅ 𝐤2||| 𝛼2
× 𝑒i𝜇

(
𝑘1

(
𝑥𝑖−𝑥𝑙1

)
+𝑘2

(
𝑦𝑗−𝑦𝑙2

))
. (2.29)

Applying the Fourier pseudo-spectral method to approximate the 
previous equivalent system (2.4)-(2.7) in space gives the space semi-

discrete system as follows

𝛷𝑡 =𝐷𝛼𝑃 + 𝜅Ψ− 𝛽
(
𝑃 2 +𝑄2) ⋅ 𝑃 , (2.30)

Ψ𝑡 =𝐷𝛼𝑄− 𝜅𝛷 − 𝛽
(
𝑃 2 +𝑄2) ⋅𝑄, (2.31)

𝑃𝑡 =𝛷, (2.32)

𝑄𝑡 =Ψ, (2.33)
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where 𝑃 2 = 𝑃 ⋅𝑃 , and ⋅ means the point multiplication between vectors.

Let

𝑌 =
(
𝛷𝑇 ,Ψ𝑇 ,𝑃 𝑇 ,𝑄𝑇

)
, (2.34)

then the above semi-discrete system can be rewritten in a canonical 
Hamiltonian form as

𝑑𝑌

𝑑𝑡
= 𝑓 (𝑌 ) = 𝑆∇𝐻(𝑌 ), (2.35)

where the Hamiltonian energy is defined by

𝐻(𝑌 ) = 1
2

(
(𝛷𝑇𝛷 +Ψ𝑇Ψ) − 𝑃𝑇𝐷𝛼𝑃 −𝑄𝑇𝐷𝛼𝑄+ 𝛽

2
(𝑃 2 +𝑄2)𝑇 (𝑃 2 +𝑄2)

)
,

(2.36)

and 𝑆 is a skew symmetric matrix with the following form

𝑆 =

⎛⎜⎜⎜⎜⎝
0 𝜅𝐼 −𝐼 0

−𝜅𝐼 0 0 −𝐼
𝐼 0 0 0
0 𝐼 0 0

⎞⎟⎟⎟⎟⎠
. (2.37)

Also, we define the mass

𝐺(𝑌 ) = 𝜅‖𝑃‖2 + 𝜅‖𝑄‖2 + 2Ψ𝑇 𝑃 − 2𝛷𝑇𝑄. (2.38)

Then we have the following theorem.

Theorem 2.5. The semi-discrete system (2.30)-(2.33) has the mass and 
energy conservation laws:

𝑑𝐺(𝑌 )
𝑑𝑡

= 0, 𝑑𝐻(𝑌 )
𝑑𝑡

= 0. (2.39)

Proof. According to (2.38), one can derive that

𝑑𝐺(𝑌 )
𝑑𝑡

= 2ℎ𝑥ℎ𝑦
(
𝜅𝑃 𝑇 𝑃𝑡 + 𝜅𝑄𝑇𝑄𝑡 +Ψ𝑇

𝑡
𝑃 +Ψ𝑇 𝑃𝑡 −𝛷𝑇𝑡 𝑄−𝛷𝑇𝑄𝑡

)
= 2ℎ𝑥ℎ𝑦

(
𝜅𝑃 𝑇𝛷 + 𝜅𝑄𝑇Ψ+ 𝑃𝑇𝐷𝛼𝑄− 𝜅𝑃 𝑇𝛷 − 𝛽𝑃 𝑇

(
𝑃 2 +𝑄2) ⋅𝑄

+Ψ𝑇 𝛷 −𝑄𝑇𝐷𝛼𝑃 − 𝜅𝑄𝑇Ψ+ 𝛽𝑄𝑇
(
𝑃 2 +𝑄2) ⋅ 𝑃 −𝛷𝑇Ψ

)
= 0. (2.40)

Based on the skew symmetric of the matrix 𝑆, it follows from (2.35)

that

𝑑𝐻(𝑌 )
𝑑𝑡

=∇𝐻(𝑌 )𝑇 𝑓 (𝑌 ) = ∇𝐻(𝑌 )𝑇 𝑆∇𝐻(𝑌 ) = 0. (2.41)

This proof is completed. □

3. Structure-preserving numerical methods

3.1. PAVF-P scheme

For NFSWEs (1.1), there are many structure-preserving methods, 
but most of these methods only preserve modified energy or mass, see 
[23,25]. This inspired us to construct numerical methods that not only 
preserve the original energy, but also preserve original mass. Based on 
the Hamiltonian system (2.35) established above, here we apply the 
partitioned averaged vector field (PAVF) method developed in [29] to 
construct structure-preserving methods for NFSWEs (1.1) because the 
PAVF method preserves not only traditional energy, but possibly other 
conservation properties.

Considering the Hamiltonian system (2.35), and applying the PAVF 
method, we can obtain the fully-discrete scheme for solving NFSWEs 
(1.1) as follows

𝛿𝑡𝛷
𝑚 =

1

∫
0

𝜅𝐻Ψ
(
𝛷𝑚+1, 𝜀Ψ𝑚+1 + (1 − 𝜀)Ψ𝑚,𝑃𝑚,𝑄𝑚

)
−𝐻𝑃

(
𝛷𝑚+1,Ψ𝑚+1, 𝜀𝑃𝑚+1 + (1 − 𝜀)𝑃𝑚,𝑄𝑚

)
𝑑𝜀, (3.1)

𝛿𝑡Ψ

𝛿𝑡𝑃

𝛿𝑡𝑄

Th

𝛿𝑡𝛷

𝛿𝑡Ψ

𝛿𝑡𝑃

𝛿𝑡𝑄

Th

FP

tio

inn

na

can

𝛿𝑡

𝛿

𝛿

𝛿𝑡𝑄

sch

sch

𝛿𝑡𝛷

𝛿𝑡Ψ

𝛿𝑡𝑃

𝛿𝑡𝑄

3.2

Th

ert

𝐺𝑚

wh

𝐺𝑚
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𝑚 =

1

∫
0

−𝜅𝐻𝛷

(
𝜀𝛷𝑚+1 + (1 − 𝜀)𝛷𝑚,Ψ𝑚,𝑃𝑚,𝑄𝑚

)
−𝐻𝑄

(
𝛷𝑚+1,Ψ𝑚+1, 𝑃 𝑚+1, 𝜀𝑄𝑚+1 + (1 − 𝜀)𝑄𝑚

)
𝑑𝜀, (3.2)

𝑚 =

1

∫
0

𝐻𝛷

(
𝜀𝛷𝑚+1 + (1 − 𝜀)𝛷𝑚,Ψ𝑚,𝑃𝑚,𝑄𝑚

)
𝑑𝜀, (3.3)

𝑚 =

1

∫
0

𝐻Ψ
(
𝛷𝑚+1, 𝜀Ψ𝑚+1 + (1 − 𝜀)Ψ𝑚,𝑃𝑚,𝑄𝑚

)
𝑑𝜀. (3.4)

e above numerical scheme can be further integrated as

𝑚 = 𝜅Ψ𝑚+
1
2 +𝐷𝛼𝑃𝑚+

1
2 − 𝛽

4
(
(𝑃𝑚+1)3 + (𝑃𝑚)2 ⋅ 𝑃𝑚+1 + (𝑃𝑚+1)2 ⋅ 𝑃𝑚

+ (𝑃𝑚)3 + 2𝑃𝑚+1 ⋅ (𝑄𝑚)2 + 2𝑃𝑚 ⋅ (𝑄𝑚)2
)
, (3.5)

𝑚 =− 𝜅𝛷𝑚+
1
2 +𝐷𝛼𝑄𝑚+

1
2 − 𝛽

4
(
(𝑄𝑚+1)3 + (𝑄𝑚)2 ⋅𝑄𝑚+1 + (𝑄𝑚+1)2 ⋅𝑄𝑚

+ (𝑄𝑚)3 + 2𝑄𝑚+1 ⋅ (𝑃𝑚+1)2 + 2𝑄𝑚 ⋅ (𝑃𝑚+1)2
)
, (3.6)

𝑚 = 𝛷𝑚+
1
2 , (3.7)

𝑚 = Ψ𝑚+
1
2 . (3.8)

e proposed fully-discrete scheme (3.5)-(3.8) will hereafter be called 
AVF (Fourier pseudo-spectral PAVF) scheme. The energy conserva-

n property of the FPAVF scheme can be easily obtained by taking the 
er product of (3.5)-(3.6) with 𝛿𝑡𝑃𝑚 and 𝛿𝑡𝑄𝑚 respectively. Unfortu-

tely this scheme does not guarantee the conservation of mass, which 
 be reflected in numerical examples.

The adjoint of the FPAVF scheme (3.5)-(3.8) can be reads as

𝛷𝑚 = 𝜅Ψ𝑚+
1
2 +𝐷𝛼𝑃𝑚+

1
2 − 𝛽

4
(
(𝑃𝑚+1)3 + (𝑃𝑚)2 ⋅ 𝑃𝑚+1 + (𝑃𝑚+1)2 ⋅ 𝑃𝑚

+(𝑃𝑚)3 + 2𝑃𝑚+1 ⋅ (𝑄𝑚+1)2 + 2𝑃𝑚 ⋅ (𝑄𝑚+1)2
)
, (3.9)

𝑡Ψ𝑚 =− 𝜅𝛷𝑚+
1
2 +𝐷𝛼𝑄𝑚+

1
2 − 𝛽

4
(
(𝑄𝑚+1)3 + (𝑄𝑚)2 ⋅𝑄𝑚+1 + (𝑄𝑚+1)2 ⋅𝑄𝑚

+(𝑄𝑚)3 + 2𝑄𝑚+1 ⋅ (𝑃𝑚)2 + 2𝑄𝑚 ⋅ (𝑃𝑚)2
)
, (3.10)

𝑡𝑃
𝑚 = 𝛷𝑚+

1
2 , (3.11)

𝑚 = Ψ𝑚+
1
2 . (3.12)

Combining the FPAVF scheme (3.5)-(3.8) and the adjoint FPAVF 
eme (3.9)-(3.12), the FPAVF-P (Fourier pseudo-spectral PAVF plus) 
eme is given by

𝑚 = 𝜅Ψ𝑚+
1
2 +𝐷𝛼𝑃𝑚+

1
2 − 𝛽

4
(
(𝑃𝑚+1)3 + (𝑃𝑚)2 ⋅ 𝑃𝑚+1 + (𝑃𝑚+1)2 ⋅ 𝑃𝑚

+(𝑃𝑚)3 + 𝑃𝑚+1 ⋅ (𝑄𝑚)2 + 𝑃𝑚 ⋅ (𝑄𝑚)2 + 𝑃𝑚+1 ⋅ (𝑄𝑚+1)2

+ 𝑃𝑚 ⋅ (𝑄𝑚+1)2
)
, (3.13)

𝑚 =− 𝜅𝛷𝑚+
1
2 +𝐷𝛼𝑄𝑚+

1
2 − 𝛽

4
(
(𝑄𝑚+1)3 + (𝑄𝑚)2 ⋅𝑄𝑚+1 + (𝑄𝑚+1)2 ⋅𝑄𝑚

+(𝑄𝑚)3 +𝑄𝑚+1 ⋅ (𝑃𝑚+1)2 +𝑄𝑚 ⋅ (𝑃𝑚+1)2 +𝑄𝑚+1 ⋅ (𝑃𝑚)2

+𝑄𝑚 ⋅ (𝑃𝑚)2
)
, (3.14)

𝑚 = 𝛷𝑚+
1
2 , (3.15)

𝑚 = Ψ𝑚+
1
2 . (3.16)

. Discrete conservation laws

eorem 3.1. The FPAVF-P scheme (3.13)-(3.16) has the following prop-

ies of energy-preserving and mass-preserving in discrete sense:

+1 =𝐺𝑚, 𝐻𝑚+1 =𝐻𝑚, 0 ≤𝑚 ≤𝑀 − 1, (3.17)

ere the discrete mass is defined as

= 𝜅‖𝑃𝑚‖2 + 𝜅‖𝑄𝑚‖2 + 2 (Ψ𝑚)𝑇 𝑃𝑚 − 2(𝛷𝑚)𝑇 𝑄𝑚, (3.18)
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and the discrete energy has the form

𝐻𝑚 =1
2
[((𝛷𝑚)𝑇 𝛷𝑚 + (Ψ𝑚)𝑇Ψ𝑚) − ((𝑃𝑚)𝑇 𝐷𝛼𝑃𝑚 + (𝑄𝑚)𝑇 𝐷𝛼𝑄𝑚)

+ 𝛽

2
((𝑃𝑚)2 + (𝑄𝑚)2)𝑇 ((𝑃𝑚)2 + (𝑄𝑚)2)]. (3.19)

Proof. Taking the inner product of (3.13) with 𝑄𝑚+1 +𝑄𝑚 yields that

(𝑄𝑚+1 +𝑄𝑚)𝑇 𝛿𝑡𝛷𝑚

= (𝑄𝑚+1 +𝑄𝑚)𝑇 𝜅Ψ𝑚+
1
2 + (𝑄𝑚+1 +𝑄𝑚)𝑇 𝐷𝛼𝑃𝑚+

1
2

− (𝑄𝑚+1 +𝑄𝑚)𝑇 𝛽
4
(
(𝑃𝑚+1)3 + (𝑃𝑚)2 ⋅ 𝑃𝑚+1 + (𝑃𝑚+1)2 ⋅ 𝑃𝑚

+(𝑃𝑚)3 + 𝑃𝑚+1 ⋅ (𝑄𝑚)2 + 𝑃𝑚 ⋅ (𝑄𝑚)2 + 𝑃𝑚+1 ⋅ (𝑄𝑚+1)2 + 𝑃𝑚 ⋅ (𝑄𝑚+1)2
)
.

(3.20)

Similarly, taking the inner product of (3.14) with 𝑃𝑚+1 + 𝑃𝑚 gives that

(𝑃𝑚+1 + 𝑃𝑚)𝑇 𝛿𝑡Ψ𝑚

=− (𝑃𝑚+1 + 𝑃𝑚)𝑇 𝜅𝛷𝑚+
1
2 + (𝑃𝑚+1 + 𝑃𝑚)𝑇 𝐷𝛼𝑄𝑚+

1
2

− (𝑃𝑚+1 + 𝑃𝑚)𝑇 𝛽
4
(
(𝑄𝑚+1)3 + (𝑄𝑚)2 ⋅𝑄𝑚+1 + (𝑄𝑚+1)2 ⋅𝑄𝑚

+(𝑄𝑚)3 +𝑄𝑚+1 ⋅ (𝑃𝑚+1)2 +𝑄𝑚 ⋅ (𝑃𝑚+1)2 +𝑄𝑚+1 ⋅ (𝑃𝑚)2 +𝑄𝑚 ⋅ (𝑃𝑚)2
)

(3.21)

Subtracting (3.21) from (3.20) deduces that

(𝑄𝑚+1 +𝑄𝑚)𝑇 𝛿𝑡𝛷𝑚 − (𝑃𝑚+1 + 𝑃𝑚)𝑇 𝛿𝑡Ψ𝑚

= (𝑄𝑚+1 +𝑄𝑚)𝑇 𝜅Ψ𝑚+
1
2 + (𝑃𝑚+1 + 𝑃𝑚)𝑇 𝜅𝛷𝑚+

1
2 . (3.22)

Noticing that

𝛿𝑡𝑃
𝑚 =𝛷𝑚+

1
2 , 𝛿𝑡𝑄

𝑚 =Ψ𝑚+
1
2 ,

one gets that

(𝑄𝑚+1 +𝑄𝑚)𝑇 𝛿𝑡𝛷𝑚−(𝑃𝑚+1 + 𝑃𝑚)𝑇 𝛿𝑡Ψ𝑚

= (𝑄𝑚+1 +𝑄𝑚)𝑇 𝜅𝛿𝑡𝑄𝑚 + (𝑃𝑚+1 + 𝑃𝑚)𝑇 𝜅𝛿𝑡𝑃𝑚. (3.23)

That is,

(𝑄𝑚+1 +𝑄𝑚)𝑇 (𝛷𝑚+1 −𝛷𝑚) − (𝑃𝑚+1 + 𝑃𝑚)𝑇 (Ψ𝑚+1 −Ψ𝑚)

= 𝜅(‖𝑄𝑚+1‖2 − ‖𝑄𝑚‖2) + 𝜅(‖𝑃𝑚+1‖2 − ‖𝑃𝑚‖2). (3.24)

Cross-multiplying (3.15) and (3.16) yields that

((𝑄𝑚+1)𝑇 𝛷𝑚+1 − (𝑃𝑚+1)𝑇Ψ𝑚+1) − ((𝑄𝑚)𝑇 𝛷𝑚 − (𝑃𝑚)𝑇Ψ𝑚)

=((𝑄𝑚)𝑇 𝛷𝑚+1 − (𝑃𝑚)𝑇Ψ𝑚+1) − ((𝑄𝑚+1)𝑇 𝛷𝑚 − (𝑃𝑚+1)𝑇Ψ𝑚). (3.25)

Substituting (3.25) into (3.24), one obtains

𝜅‖𝑃𝑚+1‖2 + 𝜅‖𝑄𝑚+1‖2 + 2(𝑃𝑚+1)𝑇Ψ𝑚+1 − 2(𝑄𝑚+1)𝑇 𝛷𝑚+1

= 𝜅‖𝑃𝑚‖2 + 𝜅‖𝑄𝑚‖2 + 2(𝑃𝑚)𝑇Ψ𝑚 − 2(𝑄𝑚)𝑇 𝛷𝑚, (3.26)

which implies that

𝐺𝑚+1 =𝐺𝑚. (3.27)

Similarly, by taking the discrete inner products of (3.13), (3.14) with 
𝛿𝑡𝑃

𝑚 and 𝛿𝑡𝑄𝑚 respectively, and summing them together, one can ob-

tain the energy conservation law

𝐻𝑚+1 =𝐻𝑚. (3.28)

This proof is completed. □
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.3. Other numerical methods

For comparison, we also give the following two second-order AVF 
chemes for NFSWEs (1.1).

∙ The FAVF (Fourier pseudo-spectral AVF) scheme

𝛿𝑡𝛷 = 𝐷𝛼𝑃𝑚+
1
2 + 𝜅Ψ𝑚+

1
2 − 𝛽

12
(
3(𝑃𝑚+1)3 − 5(𝑃𝑚+1)2 ⋅ 𝑃𝑚

− 5(𝑃𝑚)2 ⋅ 𝑃𝑚+1 + 19(𝑃𝑚)3 − 6𝑄𝑚+1 ⋅𝑄𝑚 ⋅ 𝑃𝑚

+ 2𝑄𝑚+1 ⋅𝑄𝑚 ⋅ 𝑃𝑚+1

+ 3(𝑄𝑚+1)2 ⋅ 𝑃𝑚+1 + (𝑄𝑚)2 ⋅ 𝑃𝑚+1 − 7(𝑄𝑚+1)2 ⋅ 𝑃𝑚

+19(𝑄𝑚)2 ⋅ 𝑃𝑚
)
, (3.29)

𝛿𝑡Ψ= 𝐷𝛼𝑄𝑚+
1
2 − 𝜅𝛷𝑚+

1
2 − 𝛽

12
(
3(𝑄𝑚+1)3 − 5(𝑄𝑚+1)2 ⋅𝑄𝑚

− 5(𝑄𝑚)2 ⋅𝑄𝑚+1 + 19(𝑄𝑚)3 − 6𝑃𝑚+1 ⋅ 𝑃𝑚 ⋅𝑄𝑚

+ 2𝑃𝑚+1 ⋅ 𝑃𝑚 ⋅𝑄𝑚+1

+ 3(𝑃𝑚+1)2 ⋅𝑄𝑚+1 + (𝑃𝑚)2 ⋅𝑄𝑚+1 − 7(𝑃𝑚+1)2 ⋅𝑄𝑚

+ 19(𝑃𝑚)2 ⋅𝑄𝑚
)
, (3.30)

𝛿𝑡𝑃 = 𝛷𝑚+
1
2 , (3.31)

𝛿𝑡𝑄 = Ψ𝑚+
1
2 . (3.32)

∙ The FPAVF-C (Fourier pseudo-spectral PAVF composition) scheme

1
𝜏

(
𝛷∗ −𝛷𝑚

)
= 1

2
𝜅(Ψ∗ +Ψ𝑚) + 1

2
𝐷𝛼(𝑃 ∗ + 𝑃𝑚)

− 𝛽

4
(
(𝑃 ∗)3 + (𝑃𝑚)2 ⋅ 𝑃 ∗ + (𝑃 ∗)2 ⋅ 𝑃𝑚

+(𝑃𝑚)3 + 2𝑃 ∗ ⋅ (𝑄𝑚)2 + 2𝑃𝑚 ⋅ (𝑄𝑚)2
)
, (3.33)

1
𝜏

(
Ψ∗ −Ψ𝑚

)
= −1

2
𝜅(𝛷∗ +𝛷𝑚) + 1

2
𝐷𝛼(𝑄∗ +𝑄𝑚)

− 𝛽

4
(
(𝑄∗)3 + (𝑄𝑚)2 ⋅𝑄∗ + (𝑄∗)2 ⋅𝑄𝑚

+(𝑄𝑚)3 + 2𝑄∗ ⋅ (𝑃 ∗)2 + 2𝑄𝑚 ⋅ (𝑃 ∗)2
)
, (3.34)

1
𝜏

(
𝑃 ∗ − 𝑃𝑚

)
= 1

2
(𝛷∗ +𝛷𝑚), (3.35)

1
𝜏

(
𝑄∗ −𝑄𝑚

)
= 1

2
(Ψ∗ +Ψ𝑚), (3.36)

1
𝜏

(
𝛷𝑚+1 −𝛷∗) = 1

2
𝜅(Ψ𝑚+1 +Ψ∗) + 1

2
𝐷𝛼𝑃

𝑚+ 1
2

− 𝛽

4
(
(𝑃𝑚+1)3 + (𝑃 ∗)2 ⋅ 𝑃𝑚+1 + (𝑃𝑚+1)2 ⋅ 𝑃 ∗

+(𝑃 ∗)3 + 2𝑃𝑚+1 ⋅ (𝑄𝑚+1)2 + 2𝑃 ∗ ⋅ (𝑄𝑚+1)2
)
, (3.37)

1
𝜏

(
Ψ𝑚+1 −Ψ∗) = −1

2
𝜅(𝛷𝑚+1 +𝛷∗) + 1

2
𝐷𝛼𝑄

𝑚+ 1
2

− 𝛽

4
(
(𝑄𝑚+1)3 + (𝑄∗)2 ⋅𝑄𝑚+1 + (𝑄𝑚+1)2 ⋅𝑄∗

+(𝑄∗)3 + 2𝑄𝑚+1 ⋅ (𝑃 ∗)2 + 2𝑄∗ ⋅ (𝑃 ∗)2
)
, (3.38)

1
𝜏

(
𝑃𝑚+1 − 𝑃 ∗) = 1

2
(𝛷𝑚+1 +𝛷∗), (3.39)

1
𝜏

(
𝑄𝑚+1 −𝑄∗) = 1

2
(Ψ𝑚+1 +Ψ∗), (3.40)

here Φ∗, Ψ∗, 𝑃 ∗, 𝑄∗ denote the intermediary variables obtained iter-

tively from the preceding layer and used as inputs to calculate the 
ariables of the subsequent layer.

emark 3.2. Similar to FPAVF-P scheme (3.13)-(3.16), it is easy 
 prove that the above FPAVF scheme (3.5)-(3.8), FAVF scheme 

3.29)-(3.32) and the FPAVF-C scheme (3.33)-(3.40) all preserve the 
riginal energy but not the original mass, and the discrete energy has 
e same form defined in (3.19).
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Fig. 1. Convergence orders of four schemes for Example 4.1 with 𝛼 = 1.5.

Fig. 2. Convergence orders of four schemes for Example 4.1 with 𝛼 = 2.0.
Remark 3.3. It is worth emphasizing that the other existing meth-

ods for solving NFSWEs (1.1)-(1.2) only preserve modified energy and 
(or) modified mass. For example, the SAV method [24] only preserves 
modified energy, three-level linearly implicit difference scheme [22]

preserves modified energy and mass. However the proposed FPAVF-P 
scheme (3.13)-(3.16) preserves both original mass and energy in dis-

crete sense. This is one of the main contributions. Also the FPAVF-P 
scheme (3.13)-(3.16) has second-order accuracy in time and spectral 
accuracy in space.

4. Numerical examples

To support and verify previous theoretical results, some numerical 
examples are provided in this section. In our calculation, a fast solver 
method based on the fast Fourier transformation (FFT) methodology is 
employed, which can reduce memory requirements and computational 
complexity.
59
To obtain numerical errors, we utilize the following error functions

𝐸(𝜏) = ‖‖‖𝑈𝑀𝑁 −𝑈2𝑀
𝑁

‖‖‖∞ , 𝐸(𝑁) = ‖‖‖𝑈𝑀𝑁 −𝑈𝑀2𝑁
‖‖‖∞ , (4.1)

where

‖‖‖𝑈𝑀𝑁 −𝑈2𝑀
𝑁

‖‖‖∞ =
‖‖‖‖𝑈 (

𝑇

𝑀
,
𝐿

𝑁

)
−𝑈

(
𝑇

2𝑀
,
𝐿

𝑁

)‖‖‖‖∞ ,‖‖‖𝑈𝑀𝑁 −𝑈𝑀2𝑁
‖‖‖∞ =

‖‖‖‖𝑈 (
𝑇

𝑀
,
𝐿

𝑁

)
−𝑈

(
𝑇

𝑀
,
𝐿

2𝑁

)‖‖‖‖∞ ,
and the convergence orders in time and space on two successive time 
step sizes 𝜏 and 𝜏∕2 and two successive polynomial degrees 𝑁 and 2𝑁
are calculated by

order =

{
log2[𝐸(𝜏)∕𝐸(𝜏∕2)], in time

log2[𝐸(𝑁)∕𝐸(2𝑁)], in space.
(4.2)

In order to depict the conservation performance, the relative errors 
of energy and mass are calculated by
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Fig. 3. Discrete energy for different 𝛼 in Example 4.1 with 𝑁 = 512 and 𝜏 = 0.01.
𝑅𝐻𝑛 = |||(𝐻𝑛 −𝐻0)∕𝐻0||| , 𝑅𝐺𝑛 = |||(𝐺𝑛 −𝐺0)∕𝐺0||| , (4.3)

where 𝐻𝑛, 𝐺𝑛 denote the discrete energy and mass at 𝑡𝑛 respectively.

Example 4.1. Firstly, we consider the 1D NFSWEs (1.1)-(1.2) as

𝑢𝑡𝑡 + (−Δ)𝛼∕2𝑢+ i𝑢𝑡 + |𝑢|2𝑢 = 0, (𝑥, 𝑡) ∈ Ω × [0, 𝑇 ], (4.4)

with 𝑢(𝑥, 0) = (1 + i)𝑥𝑒−10(1−𝑥)2 and 𝑢𝑡(𝑥, 0) = 0.

Based on the conservation laws in discrete sense given in (3.17), one 
has 𝐺𝑛 ≡𝐺0 and 𝐻𝑛 ≡𝐻0, and 𝐺0, 𝐻0 only depend on the given initial 
value functions 𝑢(𝑥, 0) and 𝑢𝑡(𝑥, 0). It is not difficult to verify that the 
initial value function 𝑢(𝑥, 0) exponentially decays to zero along 𝑥 away 
from 𝑥 = 1. It means that the initial value function could be negligi-

ble outside a bounded interval Ω. Here, we take Ω = (−25, 25). Based 
on the conservation laws in continuous case defined by (1.4), using 
the Gaussian numerical integration, we immediately have the origi-

nal mass 𝐺(0) = 0.812482096009503 for any 𝛼, and the original energy 
𝐸(0) = 4.56197648980619 for 𝛼 = 2.
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We first compute the convergence orders of above four schemes (the 
FPAVF-P, FPAVF, FAVF and FPAVF-C schemes) for 𝑇 = 1 with respect 
to 𝛼 = 1.5 and 𝛼 = 2.0 respectively, see Figs. 1-2. It is easy to find that 
the four schemes all have spectral accuracy in space, and the FPAVF 
scheme exhibits first-order accuracy in time while other schemes exhibit 
second-order accuracy.

Now we focus on the conservation performance of the existing meth-

ods. The evolution of the discrete energy over a long period of time is 
shown in Fig. 3, which are calculated by 𝑁 = 512 and 𝜏 = 0.01 for differ-

ent 𝛼 respectively. One can observe that, especially from the results of 
𝛼 = 2, the discrete energy computed by the FPAVF-P, FPAVF, FAVF and 
FPAVF-C schemes are convergent uniformly to the original energy, but 
the SAV method [24] and three-level linearly implicit difference scheme 
[22] have poor performance. This phenomenon is consistent with the 
latter preserves only a modified energy rather than the original energy.

Similarly, the evolution of the discrete mass over a long period of 
time is shown in Fig. 4. It should be emphasized that the SAV method 
does not have conservation of mass. One can see that the FPAVF-P 
scheme is convergent uniformly to the original mass, other methods 
have relatively poor performance especially the FAVF scheme, and 
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Fig. 4. Discrete mass for different 𝛼 in Example 4.1 with 𝑁 = 512 and 𝜏 = 0.01.
the three-level linearly implicit difference scheme preserves a modified 
mass. Also the discrete mass based on FPAVF-C scheme shows frequent 
oscillations on a small scale.

More precisely, the values of discrete energy 𝐻𝑛 and discrete mass 
𝐺𝑛 at different times 𝑡 = 𝑡𝑛 for different 𝛼 are shown in Tables 1-4, 
which are obtained by taking 𝑁 = 512 and 𝜏 = 0.01. From Table 1, one 
can see that the proposed four schemes preserve the original energy, 
but the SAV scheme and linearly implicit difference scheme only pre-

serve a modified energy. Similarly, from Tables 2-4, we observe that the 
FPAVF-P scheme is convergent uniformly to the original mass, other 
methods have poor performance and the three-level linearly implicit 
scheme only conserves modified mass.

Based on the fact that the original energy for 𝛼 ≠ 2 is not easy to 
calculate, we verify the discrete conservation laws from the view of rel-

ative error, see Figs. 5-6. Again, these figures show that the FPAVF-P 
scheme has the best performance in terms of preserves original mass. 
And with the increase of 𝛼, its performance of preserving the original 
energy will be better. These observations are compatible with our pre-

vious theoretical results.

Example 4.2. Now we consider the 2D NFSWEs (1.1)-(1.2) with 𝛽 = 𝜅 =
1 and the initial values
61
𝑢(𝑥, 𝑦,0) = sech
(
𝑥2 + 𝑦2

)
, 𝑢𝑡(𝑥, 𝑦,0)

= sin(𝑥+ 𝑦)sech
(
−2(𝑥2 + 𝑦2)

)
, (𝑥, 𝑦, 𝑡) ∈ Ω × [0, 𝑇 ], (4.5)

where Ω = [−5, 5] × [−5, 5].

Similar to one dimensional case, we first compute the convergence 
orders of the FPAVF-P, FPAVF, FAVF and FPAVF-C schemes for 𝑇 = 1
when 𝛼 = 1.5 and 𝛼 = 2.0 respectively. The change of errors is shown in 
Figs. 7-8. We can clearly observe that the four schemes all have spectral 
accuracy in space, and the FPAVF scheme exhibits first-order accuracy 
while other schemes exhibit second-order accuracy in time.

For comparison the structure preserving ability with the existing 
methods, we first calculated the original mass and energy. Notic-

ing that the original mass 𝐺(𝑡) is independent of 𝛼, by using the 
Gaussian numerical integration, we obtain the original mass 𝐺(0) =
3.14159265323701 for any 𝛼. Similarly, we can get the original energy 
𝐸(0) = 3.22697078976648 for 𝛼 = 2.

Unlike the one-dimensional problem, there is no three-level linear 
implicit scheme for two-dimensional cases, so below we only compare 
the performance of the SAV method, and FPAVF-P, FAVF and FPAVF-

C schemes proposed in this paper. The evolution of the discrete mass 
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Table 1

Discrete energy 𝐻𝑛 at time 𝑡 = 𝑡𝑛 for Example 4.1 when 𝛼 = 2.

𝑡 FAVF FPAVF FPAVF-C SAV Linear-Implicit FPAVF-P

0 4.561976489785 4.561976489785 4.561976489785 4.457414815200 4.453861069486 4.561976489785

10 4.561976489785 4.561976489785 4.561976489785 4.457414815200 4.453861069486 4.561976489785

100 4.561976489785 4.561976489785 4.561976489782 4.457414815197 4.453861069489 4.561976489785

200 4.561976489785 4.561976489785 4.561976489779 4.457414815195 4.453861069492 4.561976489785

300 4.561976489785 4.561976489785 4.561976489776 4.457414815192 4.453861069494 4.561976489785

400 4.561976489785 4.561976489785 4.561976489772 4.457414815190 4.453861069497 4.561976489785

500 4.561976489785 4.561976489785 4.561976489768 4.457414815187 4.453861069500 4.561976489785

Original energy: 4.56197648980619

Table 2

Discrete mass 𝐺𝑛 at time 𝑡 = 𝑡𝑛 for Example 4.1 when 𝛼 = 1.3.

𝑡 FAVF FPAVF FPAVF-C Linear-Implicit FPAVF-P

0 0.812482096011643 0.812486108372853 0.812481093228288 0.812269212105079 0.812482096009232

10 0.812481652913507 0.815448411130831 0.812482228623069 0.812269212105449 0.812482096009234

100 0.812479701090339 0.815337307670638 0.812482081439882 0.812269212105119 0.812482096009236

200 0.812476755660814 0.815352772611703 0.812482091028916 0.812269212105298 0.812482096009256

300 0.812471706145304 0.815369448311709 0.812482102752682 0.812269212105193 0.812482096009262

400 0.812466871593141 0.815375406648485 0.812482112407629 0.812269212105361 0.812482096009263

500 0.812463332390332 0.815391313914498 0.812482125179718 0.812269212105409 0.812482096009261

Original mass: 0.812482096009503

Table 3

Discrete mass 𝐺𝑛 at time 𝑡 = 𝑡𝑛 for Example 4.1 when 𝛼 = 1.6.

𝑡 FAVF FPAVF FPAVF-C Linear-Implicit FPAVF-P

0 0.812482096014526 0.812487932904355 0.812480637459791 0.812191342790779 0.812482096009232

10 0.812479542844467 0.815290680597744 0.812482338980161 0.812191342790869 0.812482096009234

100 0.812471993678066 0.814964610988901 0.812482077830270 0.812191342790519 0.812482096009245

200 0.812465076996841 0.814934135072654 0.812482168949170 0.812191342790438 0.812482096009252

300 0.812461964307183 0.815026734196011 0.812482132284732 0.812191342790211 0.812482096009255

400 0.812456227758388 0.815045189971354 0.812482132454783 0.812191342790067 0.812482096009255

500 0.812447472460440 0.815097180030255 0.812482122664758 0.812191342789578 0.812482096009251

Original mass: 0.812482096009503

Table 4

Discrete mass 𝐺𝑛 at time 𝑡 = 𝑡𝑛 for Example 4.1 when 𝛼 = 2.

𝑡 FAVF FPAVF FPAVF-C Linear-Implicit FPAVF-P

0 0.812482096027426 0.812492566135382 0.812479480708946 0.812007279829162 0.812482096009232

10 0.812501574603936 0.815690689466538 0.812482208549750 0.812007279829185 0.812482096009233

100 0.812485179319911 0.815559529804266 0.812482224295188 0.812007279829068 0.812482096009234

200 0.812436598720768 0.815737264057778 0.812482177481325 0.812007279828906 0.812482096009234

300 0.812395565737519 0.815914179675223 0.812482122649446 0.812007279828999 0.812482096009235

400 0.812353830841431 0.816227202656059 0.812482101787071 0.812007279828969 0.812482096009235

500 0.812317849493374 0.816336221770707 0.812482109657662 0.812007279829037 0.812482096009234

Original mass: 0.812482096009503

Fig. 5. The relative errors of discrete mass for different 𝛼 in Example 4.1 with 𝑁 = 512 and 𝜏 = 0.01.
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Fig. 6. The relative errors of discrete energy for different 𝛼 in Example 4.1 with 𝑁 = 512 and 𝜏 = 0.01.

Fig. 7. Convergence orders of four schemes for Example 4.2 with 𝛼 = 1.5.

Fig. 8. Convergence orders of four schemes for Example 4.2 with 𝛼 = 2.0.
63
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Fig. 9. Discrete mass for different 𝛼 in Example 4.2 with 𝑁 = 64 and 𝜏 = 0.01.

Table 5

Discrete energy 𝐻𝑛 at time 𝑡 = 𝑡𝑛 for Example 4.2 when 𝛼 = 2.

𝑡 FAVF FPAVF FPAVF-C SAV FPAVF-P

0 3.22697078740176 3.22697078740176 3.22697078740173 3.21234862767094 3.22697078740176

10 3.22697078740176 3.22697078740176 3.22697078740168 3.21234862767062 3.22697078740176

20 3.22697078740176 3.22697078740176 3.22697078740172 3.21234862767066 3.22697078740176

40 3.22697078740175 3.22697078740176 3.22697078740182 3.21234862767033 3.22697078740176

60 3.22697078740176 3.22697078740176 3.22697078740191 3.21234862767035 3.22697078740176

80 3.22697078740176 3.22697078740175 3.22697078740199 3.21234862767073 3.22697078740176

100 3.22697078740175 3.22697078740176 3.22697078740207 3.21234862767045 3.22697078740176

Original energy: 3.22697078976648
and discrete energy over a long period of time are shown in Figs. 9-10, 
which are calculated by 𝑁 = 64 and 𝜏 = 0.01 for different 𝛼 respec-

tively. Also the change of this relative error of discrete mass and energy 
over time are shown in Figs. 11-12. One can observe that the FPAVF-P 
scheme is convergent uniformly to the original mass, other three meth-

ods have poor performance especially the FAVF scheme and FPAVF 
scheme (the result with respect to FPAVF scheme is not shown here 
because it is even worse). And the three schemes proposed in this pa-
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per all can preserve the original energy invariance very well, the SAV 
method only conserves a modified energy. These phenomena once again 
confirm the correctness of our theoretical results.

A more detailed comparison is shown in Tables 5-8, and we can 
reach the same conclusion by observing these data.

Finally, we depict the evolution of waves over time 𝑡 for 𝛼 =
1.3, 1.6, 1.99, 2 in Figs. 13-16 respectively, which are obtained by taking 
𝑁 = 128 and 𝜏 = 0.01. We can observe that the order 𝛼 will significantly 
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Fig. 10. Discrete energy for different 𝛼 in Example 4.2 with 𝑁 = 64 and 𝜏 = 0.01.

Fig. 11. The relative errors of discrete mass for different 𝛼 in Example 4.2 with 𝑁 = 64 and 𝜏 = 0.01.
affect the shape of the waves, and the shape of the wave changes faster 
when 𝛼 becomes larger. Specifically, the numerical solutions converge 
to the classical nonlinear Schrödinger wave equation when 𝛼 → 2, see 
[4,32,33].
65
5. Conclusions and remarks

In this paper, we reformulate the two-dimensional fractional non-

linear Schrödinger wave equations as a canonical Hamiltonian system. 
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Fig. 12. The relative errors of discrete energy for different 𝛼 in Example 4.2 with 𝑁 = 64 and 𝜏 = 0.01.

Table 6

Discrete mass 𝐺𝑛 at time 𝑡 = 𝑡𝑛 for Example 4.2 when 𝛼 = 1.3.

𝑡 FAVF FPAVF FPAVF-C FPAVF-P

0 3.14159297667455 3.14159361842152 3.14159241227909 3.14159265358976

10 3.14160952253933 3.13595374862870 3.14166505643569 3.14159265358963

20 3.14161343543099 3.14421089321261 3.14158965037808 3.14159265358952

40 3.14157539023564 3.14362067013654 3.14159917106759 3.14159265358932

60 3.14150249358846 3.14217508702013 3.14159868539556 3.14159265358912

80 3.14143174175214 3.14159826267015 3.14158946625201 3.14159265358895

100 3.14135672071641 3.14328710863969 3.14158227319751 3.14159265358880

Original mass: 3.14159265323701

Table 7

Discrete mass 𝐺𝑛 at time 𝑡 = 𝑡𝑛 for Example 4.2 when 𝛼 = 1.6.

𝑡 FAVF FPAVF FPAVF-C FPAVF-P

0 3.14159297668940 3.14159361814729 3.14159241218683 3.14159265358976

10 3.14163389358031 3.13754191888209 3.14160072631792 3.14159265358928

20 3.14161716177523 3.14433222488425 3.14159044899067 3.14159265358919

40 3.14149554093894 3.14475213344308 3.14160500647197 3.14159265358901

60 3.14139997924855 3.14288256207779 3.14160023436812 3.14159265358885

80 3.14127488637752 3.14241392600216 3.14158768432513 3.14159265358871

100 3.14115287766347 3.14489331385338 3.14159412822417 3.14159265358860

Original mass: 3.14159265323701

Table 8

Discrete mass 𝐺𝑛 at time 𝑡 = 𝑡𝑛 for Example 4.2 when 𝛼 = 2.

𝑡 FAVF FPAVF FPAVF-C FPAVF-P

0 3.14159297725470 3.14159361919902 3.14159241149324 3.14159265358976

10 3.14168000260412 3.14369215006721 3.14160070161208 3.14159265358976

20 3.14164544531849 3.14521250122401 3.14158745249453 3.14159265358976

40 3.14150535695500 3.14531702832209 3.14160031804829 3.14159265358976

60 3.14136438511727 3.14552013864766 3.14159560564481 3.14159265358976

80 3.14118013227991 3.14739329967543 3.14158800109644 3.14159265358976

100 3.14101125059928 3.15011874273391 3.14154787019595 3.14159265358976

Original mass: 3.14159265323701
By combining the partitioned averaged vector field plus method and 
Fourier pseudo-spectral method, we construct a conservative numerical 
scheme based on the resulting Hamiltonian system. Theoretical analysis 
and numerical findings reveal that the proposed method can preserve 
the original energy and mass effectively.

Data availability

Data will be made available on request.
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Fig. 13. The pictures of wave propagation for Example 4.2 with 𝛼 = 1.3.

Fig. 14. The pictures of wave propagation for Example 4.2 with 𝛼 = 1.6.
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Fig. 15. The pictures of wave propagation for Example 4.2 with 𝛼 = 1.99.

Fig. 16. The pictures of wave propagation for Example 4.2 with 𝛼 = 2.
68



Y. Liu, M. Ran and L. Zhang Computers and Mathematics with Applications 150 (2023) 54–69
[5] W. Bao, Y. Cai, Error estimates of finite difference methods for the nonlinear 
Schrödinger equation with wave operator, SIAM J. Numer. Anal. 50 (2) (2012) 
492–521.

[6] X. Cheng, F. Wu, Several conservative compact schemes for a class of nonlinear 
Schrödinger equations with wave operator, Bound. Value Probl. 2018 (1) (2018) 
40.

[7] L. Brugnano, C. Zhang, D. Li, A class of energy-conserving Hamiltonian boundary 
value methods for nonlinear Schrödinger equation with wave operator, Commun. 
Nonlinear Sci. Numer. Simul. 60 (2018) 33–49.

[8] M. Tsutsumi, Nonrelativistic approximation of nonlinear Klein-Gordon equations 
in two space dimensions, Nonlinear Anal., Theory Methods Appl. 8 (6) (1984) 
637–643.

[9] S. Machihara, K. Nakanishi, T. Ozawa, Nonrelativistic limit in the energy space for 
nonlinear Klein-Gordon equations, Math. Ann. 322 (3) (2002) 603–621.

[10] T. Colin, P. Fabrie, Semidiscretization in time for nonlinear Schrödinger-waves 
equations, Discrete Contin. Dyn. Syst. 4 (4) (Tue Jun 30 20:00:00 EDT 1998) 
671–690.

[11] W. Bao, X. Dong, J. Xin, Comparisons between sine-Gordon and perturbed nonlinear 
Schrödinger equations for modeling light bullets beyond critical collapse, Phys. D, 
Nonlinear Phenom. 239 (13) (2010) 1120–1134.

[12] J. Xin, Modeling light bullets with the two-dimensional sine-Gordon equation, Phys. 
D, Nonlinear Phenom. 135 (3–4) (2000) 345–368.

[13] N. Laskin, Fractional quantum mechanics, Phys. Rev. E 62 (3) (2000) 3135–3145.

[14] N. Laskin, Fractional Schrodinger equation, Phys. Rev. E 66 (5) (2002) 056108.

[15] S. Li, L. Vu-Quoc, Finite difference calculus invariant structure of a class of algo-

rithms for the nonlinear Klein-Gordon equation, SIAM J. Numer. Anal. 32 (6) (1995) 
1839–1875.

[16] D. Wang, A. Xiao, W. Yang, Crank-Nicolson difference scheme for the coupled non-

linear Schrödinger equations with the Riesz space fractional derivative, J. Comput. 
Phys. 242 (2013) 670–681.

[17] D. Wang, A. Xiao, W. Yang, A linearly implicit conservative difference scheme for 
the space fractional coupled nonlinear Schrödinger equations, J. Comput. Phys. 272 
(2014) 644–655.

[18] M. Ran, C. Zhang, A conservative difference scheme for solving the strongly coupled 
nonlinear fractional Schrödinger equations, Commun. Nonlinear Sci. Numer. Simul. 
41 (2016) 64–83.

[19] P. Wang, C. Huang, An energy conservative difference scheme for the nonlinear 
fractional Schrödinger equations, J. Comput. Phys. 293 (2015) 238–251.

[20] P. Wang, C. Huang, A conservative linearized difference scheme for the nonlinear 
fractional Schrödinger equation, Numer. Algorithms 69 (3) (2015) 625–641.

[21] Y. Wang, L. Mei, Q. Li, L. Bu, Split-step spectral Galerkin method for the two-

dimensional nonlinear space-fractional Schrödinger equation, Appl. Numer. Math. 
136 (2019) 257–278.

[22] M. Ran, C. Zhang, A linearly implicit conservative scheme for the fractional nonlin-

ear Schrödinger equation with wave operator, Int. J. Comput. Math. 93 (7) (2016) 
1103–1118.

[23] M. Li, Y.-L. Zhao, A fast energy conserving finite element method for the nonlin-

ear fractional Schrödinger equation with wave operator, Appl. Math. Comput. 338 
(2018) 758–773.

[24] X. Cheng, H. Qin, J. Zhang, Convergence of an energy-conserving scheme for non-

linear space fractional Schrödinger equations with wave operator, J. Comput. Appl. 
Math. 400 (2022) 113762.

[25] D. Hu, W. Cai, X.-M. Gu, Y. Wang, Efficient energy preserving Galerkin-Legendre 
spectral methods for fractional nonlinear Schrödinger equation with wave operator, 
Appl. Numer. Math. 172 (2022) 608–628.

[26] X. Zhang, M. Ran, Y. Liu, L. Zhang, A high-order structure-preserving difference 
scheme for generalized fractional Schrödinger equation with wave operator, Math. 
Comput. Simul. 210 (2023) 532–546.

[27] C. Budd, A. Iserles, R.I. McLachlan, G.R.W. Quispel, N. Robidoux, Geometric inte-

gration using discrete gradients, Philos. Trans. R. Soc. Lond. A, Math. Phys. Eng. Sci. 
357 (1754) (1999) 1021–1045.

[28] G.R.W. Quispel, D.I. McLaren, A new class of energy-preserving numerical integra-

tion methods, J. Phys. A, Math. Theor. 41 (4) (2008) 045206.

[29] W. Cai, H. Li, Y. Wang, Partitioned averaged vector field methods, J. Comput. Phys. 
370 (2018) 25–42.

[30] P. Wang, C. Huang, Structure-preserving numerical methods for the fractional 
Schrödinger equation, Appl. Numer. Math. 129 (2018) 137–158.

[31] Y. Fu, W. Cai, Y. Wang, Structure-preserving algorithms for the two-dimensional 
fractional Klein-Gordon-Schrödinger equation, Appl. Numer. Math. 156 (2020) 
77–93.

[32] X. Li, L. Zhang, S. Wang, A compact finite difference scheme for the nonlinear 
Schrödinger equation with wave operator, Appl. Math. Comput. 219 (6) (2012) 
3187–3197.

[33] T.-C. Wang, L.-M. Zhang, Analysis of some new conservative schemes for nonlin-

ear Schrödinger equation with wave operator, Appl. Math. Comput. 182 (2) (2006) 
1780–1794.
69

http://refhub.elsevier.com/S0898-1221(23)00396-6/bibA1F45624EEBD9D28B151BD85ABFF9D36s1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bibA1F45624EEBD9D28B151BD85ABFF9D36s1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bibA1F45624EEBD9D28B151BD85ABFF9D36s1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bib6C0BC69231E005B7107C0FEDC5867366s1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bib6C0BC69231E005B7107C0FEDC5867366s1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bib6C0BC69231E005B7107C0FEDC5867366s1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bib8B5FE8E989C9B55D886C8821ABC086C0s1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bib8B5FE8E989C9B55D886C8821ABC086C0s1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bib8B5FE8E989C9B55D886C8821ABC086C0s1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bib843783A1FB14B1796559EBA265AC14A5s1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bib843783A1FB14B1796559EBA265AC14A5s1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bib843783A1FB14B1796559EBA265AC14A5s1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bibA1C2C43996646CB56F77E8BBF430FE43s1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bibA1C2C43996646CB56F77E8BBF430FE43s1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bib28BE32AB25D15F0FE168C8702AA9C0E5s1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bib28BE32AB25D15F0FE168C8702AA9C0E5s1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bib28BE32AB25D15F0FE168C8702AA9C0E5s1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bibAE1256045B8F3F928E302645B85D8CFEs1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bibAE1256045B8F3F928E302645B85D8CFEs1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bibAE1256045B8F3F928E302645B85D8CFEs1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bibD2F9DD45413B2CA054B89BD7D083355As1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bibD2F9DD45413B2CA054B89BD7D083355As1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bib14F289CE3CE2BDB29439CA9CE5197096s1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bibBBDBF42A443DB3F70A85585A1F51DE1Cs1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bib978AE9DB02F52EBC4C56296B7AD2640Ds1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bib978AE9DB02F52EBC4C56296B7AD2640Ds1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bib978AE9DB02F52EBC4C56296B7AD2640Ds1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bib3BDAD366CE5865D750ECF0D6F307372Fs1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bib3BDAD366CE5865D750ECF0D6F307372Fs1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bib3BDAD366CE5865D750ECF0D6F307372Fs1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bibC8A77E4221BD71A962D0515D47F92E24s1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bibC8A77E4221BD71A962D0515D47F92E24s1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bibC8A77E4221BD71A962D0515D47F92E24s1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bib63ADBAB499180B6F78349C5FE2AC641Fs1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bib63ADBAB499180B6F78349C5FE2AC641Fs1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bib63ADBAB499180B6F78349C5FE2AC641Fs1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bibD8A52B0BD92A6F303E114B0371E7FD25s1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bibD8A52B0BD92A6F303E114B0371E7FD25s1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bib0E9E03B03FEE96F280E66DA738AD948Es1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bib0E9E03B03FEE96F280E66DA738AD948Es1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bib2C9ED1FBEA8FC650939473FD21737857s1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bib2C9ED1FBEA8FC650939473FD21737857s1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bib2C9ED1FBEA8FC650939473FD21737857s1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bib454439BE15578A4427C51ED72CF2DA6Bs1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bib454439BE15578A4427C51ED72CF2DA6Bs1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bib454439BE15578A4427C51ED72CF2DA6Bs1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bib78AFC92A49F22FA9AC51C2F65FBC49BFs1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bib78AFC92A49F22FA9AC51C2F65FBC49BFs1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bib78AFC92A49F22FA9AC51C2F65FBC49BFs1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bib6732269B12AF6735CC27582DE8DFECFAs1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bib6732269B12AF6735CC27582DE8DFECFAs1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bib6732269B12AF6735CC27582DE8DFECFAs1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bibC37C5C344733F9899579A5B4A6A0E813s1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bibC37C5C344733F9899579A5B4A6A0E813s1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bibC37C5C344733F9899579A5B4A6A0E813s1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bib3B96E8072BBBDECFA079454A1A29B0B7s1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bib3B96E8072BBBDECFA079454A1A29B0B7s1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bib3B96E8072BBBDECFA079454A1A29B0B7s1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bib0071D631E73FFCF04C57E364DEF8FD0Fs1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bib0071D631E73FFCF04C57E364DEF8FD0Fs1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bib0071D631E73FFCF04C57E364DEF8FD0Fs1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bib92EC032D0DD0C0BF0B01D153842D3644s1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bib92EC032D0DD0C0BF0B01D153842D3644s1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bib94DDB54C5A6FF56F5141574B9C585A8Fs1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bib94DDB54C5A6FF56F5141574B9C585A8Fs1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bibB580F6215C3B5FA5E5698ED1D44ACE74s1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bibB580F6215C3B5FA5E5698ED1D44ACE74s1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bibBC3C08FF5EBAD771EB43475504490DD4s1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bibBC3C08FF5EBAD771EB43475504490DD4s1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bibBC3C08FF5EBAD771EB43475504490DD4s1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bib520CD0E4EE6018A9737AEEB25B30046Bs1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bib520CD0E4EE6018A9737AEEB25B30046Bs1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bib520CD0E4EE6018A9737AEEB25B30046Bs1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bibA38E4DE8C80C2F86D2D50A0A609D3E13s1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bibA38E4DE8C80C2F86D2D50A0A609D3E13s1
http://refhub.elsevier.com/S0898-1221(23)00396-6/bibA38E4DE8C80C2F86D2D50A0A609D3E13s1

	Hamiltonian-preserving schemes for the two-dimensional fractional nonlinear Schrödinger wave equations
	1 Introduction
	2 Hamiltonian structure and space semi-discrete system
	2.1 Hamiltonian structure of NFSWEs
	2.2 Space semi-discrete system

	3 Structure-preserving numerical methods
	3.1 PAVF-P scheme
	3.2 Discrete conservation laws
	3.3 Other numerical methods

	4 Numerical examples
	5 Conclusions and remarks
	Data availability
	Acknowledgements
	References


